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On the Resolution of Slow-Neutron Spectrometers. 
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Starting from a general definition of the resolution function one gets a rigorous method of calculating 
the shape of this function. The tensors of the probability moments of the parameters controlled in 
the measuring device are used in the computation. The application to neutron spectrometry is discussed. 

Introduction 

The experimental data in neutron spectrometry usually 
require a special treatment for the purpose of remov- 
ing the contribution of the instrument. An important 
step forward in this field was the introduction of the 
resolution function concept. The multidimensional res- 
olution function was first calculated for triple-axis 
spectrometers (Cooper & Nathans, 1967) and for crys- 
tal diffractometers (Cooper & Nathans, 1968). Later 
on, the resolution-function technique was extended 
also to the time-of-flight neutron spectrometry (Kom- 
ura & Cooper, 1970; Furrer, 1971 ; Popa, 1974). 

To calculate the resolution functions one generally 
begins with a detailed analysis of each spectrometer 
element, aiming at establishing its influence on the 
detected scattering event. Then integrations over a cer- 
tain number of variables are performed successively. 
To simplify the integration one usually accepts the 
Gaussian approximation for the probability distribu- 
tions involved, so that only the normal approximation 
to the resolution function is actually obtained. The 
computation method is cumbersome and does not 
reveal the general structure of the result. 

In this paper an alternative approach to the resolu- 
tion-function problem is presented. Formulae are 
given for computing the resolution-function moments 
of any order by using the probability moments of the 
original variables of the problem. The resolution func- 
tion itself is built from its moments with the aid of 
an expansion. There results a simple prescription for 
calculating the resolution function in the normal ap- 
proximation (by using second-order moments) with 
easy access to higher-order approximations (by in- 
cluding higher-order moments). § 1 describes the 
method for the general case, without restrictions spec- 
ific to neutron spectrometry. In § :2 the method is ap- 
plied to the case of double- and triple-axis neutron 
crystal spectrometers. Other applications will be de- 
scribed in subsequent papers. 

1. The resolution function. General relations 

To define the resolution function in a general manner, 
let us consider an abstract experiment consisting in the 

measurement of a certain physical quantity A which 
depends on a set of parameters ~ (i = 1 , 2 , . . . ,  n). These 
parameters, the natural variables of A, generally do 
not coincide with the parameters actually controlled 
in the experiment, whose number may be quite large 
in complex cases. Let us define the original parameters 
rh ( i - - 1 , 2 , . . . , m ;  m > n) as the set of controlled par- 
ameters whose distribution function is known a priori 
or can be evaluated empirically. 

The resolution function R(X) is defined as the prob- 
ability distribution of ~ assuming the values ~ =  
~ + X~ when the quantity A is measured. Generally A 
is a random variable, so that the process of measure- 
ment gives the mean value: 

¢t(A](1,~2,.. " '~")=I  AdF(A,~I,~2,...,~,) 

=I AdF(A[~I,~2,...,~n)R(X)dX 

= l  M(A[~I,~2, . . . ,~,)R(X)dX. (1) 

Here F(A,~I,~2,...,~,) and F(AI(1,(2, . . . , ( , , )  are the 
distribution functions of the events (A,~1,~2,.. . ,~,) 
and (A given (1 , (2 , . . . , ( , )  respectively, and M(A[(1, 
~2, . . . ,  ~,) is the conditional expectation of the random 
variable A. The aim of the experiment is to determine 
the regression of A on ( i , ( 2 , . . . , ( , .  To achieve this 
one has to know the resolution function R(X). The 
results of physical interest can be obtained either by 
deconvolution from the experimental values of 
fl(A[~l,~2,... ,~n) or by convoluting theoretical models 
with the resolution function and comparing with ex- 
perimental data. 

To compute the resolution function two assump- 
tions will be made in the following: (1) the original 
parameters r/1,...,r/m are independent; and (2) the 
functional relations between the variables of the reso- 
lution function ~ and the original parameters r/j can 
be linearized: 

X~=fl~Yj , Yj=~Ij-~lj ( j = l , 2 , . . . , m ) .  

It can be shown then (Appendix 1) that the pth- 
order moments of the resolution function are con- 
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nected with the corresponding probability moments of 
the original parameters through the relation: 

EX~IX~z . X - -  f l J l  f~J2 JP • . ,p-, ' ,1~',2"" flipEYJ1Y~2"" rip" (2) 

This theorem can be extended to sample moments. 
Moreover, the resolution-function moments, if any, are 
correctly estimated by the sample moments. There 
exists no general method of fitting distributions when 
sample moments are known. In the one-dimensional 
case the analytical method of Pearson can be used. 
The normal approximation belongs to this class of 
fittings. 

In the multidimensional case the above formalism 
gives a simple prescription for computing the resolu- 
tion function in the normal approximation: 

R(X)=Ro(2n)-"/ZI{Mu}[ ~/z exp ( - ½  ~ MuX, Xj) (3) 
i , j =  1 

where the resolution matrix {M~j} is the inverse of the 
covariance matrix {EXiXj} (Miller, 1964). 

In matrix notation (X=BY, E2= {EYiYj}) one has 
therefore the following relation for the determination 
of the resolution matrix: 

M -  1 = BEzB' (4) 

where B' is the transpose of B. 
The quadratic form ~MuX~X J must be positive def- 

inite. By means of a unique orthogonal transforma- 
tion it can be reduced to the canonical form ~Z~/o~. 
If the resolution function is not much different from 
a normal distribution, it is convenient to use the ex- 
pansion: 

R(X) = R0(2n)-"/21 {Mu}l ~/z 

x e x p ( - ½  ~ Z ~ ] {  
i = 1  m l . , , . m n  

xH"I (~-~z) "'" Hmn \]/2o~n]J (5) 

where H,,,(u) are the normalized Hermite polynomials. 
The coefficients of this expansion can be determined 
by adjusting the theoretical moments to the sample 
moments. The following relation is obtained in this 
way: 

Aml...m,=n,/z ~ 2 -u,+'''+s,,)/z C ~ . . .  C~$ 
. . . .  J ,  

E Z ~  . . .  Z~" (6) 

where C~ is the coefficient in front of u j in the nor- 
malized Hermite polynomial Hm(u). 

2. The resolution function of crystal spectrometers 

The measured quantity in neutron spectrometry is the 
scattering cross section. The original parameters in the 
experiment are the magnitudes and orientations of the 

incident and scattered neutron wave vectors k, and k¢. 
The case of a triple-axis spectrometer will be con- 

sidered first. In this case the resolution function is 
defined in {Q, co} space (Cooper & Nathans, 1967). 
We shall denote by X, the coordinates in that space 
(xl=Ox-Oxo, x2=or-Oro, xa=oz-Ozo,  x4 = 
co-  COo, the axis X3 being normal to the scattering plane) 
and by Yj the original parameters (Y1 =Aki, Y2 =k~o~',, 
Y3 = ki0J,, Y4 = Aks, I15 = ksoxf, Y6 = k¢oJs, where Ak, 
and Ak¢ are the deviations of the wave-vector moduli 
from their mean values kio and k~-o, 7,,7¢ and 6~,Je 
the angular deviations from the most probable direc- 
tions in the horizontal and vertical planes respectively, 
the scattering plane being the horizontal one). 

The linearized relationship between X and Y (see 
Grabcev, 1973) has the form X = BY with the follow- 
ing matrix B: 
g~__ 

I 
(7) 

cos ~0 sin q~ 0 - c o s  (¢o- 20s) - sin (~0- 20~) 0 \  
- sin (0 cos (p 0 sin (~0- 20~) - cos (~p- 20~) 

0 0 1 0 0 - 

hkio 0 0 hk¢o 0 
m m 

Here 20s is the scattering angle and ~ is the angle be- 
tween k~0 and the Xx axis. 

As the monochromator and analyser units are in- 
dependent, the tensor Tp of the pth probability mo- 
ments of the original parameters has the form: 

T= I 
Ep(Y1, Y2, Y3) for combinations containing 

Y1, Yz, Y3 only 
Ep(Y4, Ys, Y6) for combinations contaning 

Y4, Ys, Y6 only 
0 for mixed combinations. 

Here Ep(Y1, Ya, Ya) and Ep(Y4, Ys, Y6) are the tensors 
of the pth probability moments of the original param- 
eters controlled in the monochromator and analyser 
units respectively. The procedure of experimental de- 
termination of the original parameter distribution will 
be described in a separate paper. 

According to the method described in the previous 
section, the tensors of the pth-order moments of the 
resolution function are given by the relation (2). For 
the particular case of the second-order moments the 
corresponding matrix (the covariance matrix) is given 
in Appendix 2. By inverting it one obtains the resolu- 
tion matrix {Mu} of the normal approximation to the 
resolution function. 

If the inelastic scattering cross section does not de- 
pend on the orientation of Q (isotropic samples), then 
it is enough to define a two-dimensional resolution 
function R(A Q, Aco). Its covariance-matrix elements are 
also given in Appendix 2. 

In the neutron-diffraction case the measured quantity 
is the elastic cross section. The resolution function is 



A. D. STOICA 191 

defined in Q space (Cooper & Nathans, 1968). The 
original parameters are Y~,Yz, Ya and Y4=k~oLr, 
Ys = lq06e. The tensors Tp and the matrix B should be 
modified in the following way: 

Tp 

Ep(Y~, Y2, Ya) for combinations containing 
Y~, Yz, Ya only 

E~(Y4, Y~) for combinations containing 
Y4, Y5 only 

0 for mixed combinations, 

B =  ( 2~sin0,  - ~ c o s 0 ~  0 ~cos0~ 0 \ 
0 ( sin Os 0 ~ sin 0~ 0 ) 0 0 1 0 - 1  . 

(7a) 

The coordinate axis X~ was directed along Q0, i.e. 
~o = Os-  (n/2) sign 0~, ~ -  sign Os (Grabcev, 1974). 

The covariance matrix for this case is given in Ap- 
pendix 2. Here again one may define a one-dimen- 
sional resolution function R ( A Q )  if the elastic scat- 
tering does not depend on the orientation of Q. To 
construct the Gaussian approximation of this func- 
tion one should use the dispersion ( A Q  2) given in 
Appendix 2. 

3. Discussion 

To calculate the resolution function in the normal ap- 
proximation one can start from the explicit expres- 
sions of the transmission functions of the monochrom- 
ator and analyser units (see, for instance, Dorner, 
1972). The second-order probability moments of the 
transmission functions p~(k~) and py(ky) are obtained 
by inverting their associated matrices. With the aid of 
the matrix B given by (7) one obtains then through (4) 
and (3) the resolution function normalized to Ro = 
ViP's = _ ~p~(k~)dk~gpy(ky)dky (Dorner, 1972). The re- 
sults obtained in this way are equivalent to those de- 
rived earlier (Cooper & Nathans, 1967; Bjerrum- 
M~ller & Nielsen, 1970; Werner & Pynn, 1971 ; Quitt- 
ner, 1971; Grabcev, 1973), up to the choice of the X~ 
coordinate axis and to some possible minor mistakes. 

The method proposed in this paper has the com- 
putational advantage of using matrix language for 
constructing the normal approximation to the resolu- 
tion function. It also makes it possible to go beyond the 
normal approximation in a simple way. Moreover, it 
makes it possible to use more refined theoretical models 
(including spatial effects and non-Gaussian shape of 
the reflectivity curves) for the transmission functions 
p~(k~) and py(ky), and also to use experimental deter- 
minations for the moments of these functions. 

EYkl Yk2" • • Ykp = f Yka Yk2" • • ykpdF(Y,,) 

= I Yka Yk2. • • Y~pP (Y,)dY,. 

Theorem I: The multi tude o /  pth-order probabili ty mo- 
ments  f o r m s  a pth order tensor 

Let us consider the linear transformation y;,=z~yh 
(or, in matrix transcription, Y~=TY,). From the nor- 
malization condition ~dF(Y,])= ~dF(Y,)= 1 it follows 
that P(Y,])=(det T)-~P(Y,[Y~]). Then" 

EY;'tY£z" " "Y£P=I Y;qY;,z. . . y~pdF(Y~) 

= (det w~-1,.,-hl-rh2 hp I OY; I I  ~ k l ~ k 2  " " " Z k p  Y h l Y h 2 "  " " Y ~ , ~ , P ( Y . )  ~-~. dY, 

hp _ . . h > . h 2  zkpEYhl  Y*2 " • Yh~, - -  ~ k l ~ k 2  . . . . .  

L e m m a :  Let (m be a subspace of the space (,, in which 
(j~,j2,..., Jm) is a basis. We shall define the following 
distribution function: F(Ym) = ~F(Y,)dY,_m, where 
dY,,_ m = dym + ldym + 2. .  • dy, .  The tensor o f  the pth-order 
moments  associated with the distribution funct ion F(Ym) 
is a subtensor o f  the pth-order tensor associated with 
the distribution funct ion F(Y,). Indeed, one has: 

P 
E' yklYk2" • • Ykz, = 1 YklYR2" • . ykpF(Ym) dYm 

f Y k l Y R 2 "  " • y k p F ( Y , ) d Y m d Y , -  m 

= EyklYk2. • .Ykp, 

where it was taken into account that k~ < m. 

Theorem II: Consider the linearly independent linear 
forms z~ =c~{yj such that i< m, where m may take any 
value from 1 to n. The tensor o f  the pth-order moments  
associated with the distribution funct ion o f  the quan- 
tities z~ is given by the expression 

~thlt,,h2 hp Ezk, zk2. • • Z k p  = ~ , k l~k2  • • • c~kpE y~l Y~2 . • • Yhp • 

Let us consider in (, the vector Z,] = {Zm, Y,-,:,}. One 
fl~=6~ for f l i - c~  for i < m  and 1 J has z~=fl lYi ,  where J -  j 

m <  i<n .  On account of the tensor properties and of 
the above lemma one obtains the desired result: 

E Z k l Z k 2 .  . . Z k p =  E z k l Z ' k 2  • • . Z l p  
_ _ R h l R h 2  hp • ~pE.v ,  lY~2 Y,,p --IJklYk2 . . . . .  

hp _ , ,h1 , ,~2  • ~kpEy~lY*2" .Yhp 
-- ~kl~k2 . . . .  

APPENDIX 1 

Let us consider a vector space (,  and a basis in this 
space (Jl , . . . ,J ,)-  Let F ( y l , . . . , y , )  be a distribution 
function defined in this space. For the pth-order prob- 
ability moments we shall use the notation: 

APPENDIX 2 

The covariance matrices of the original-parameter 
probability distributions for the triple-axis spectrom- 
eter case have the following structure: 
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(Ak~> k,o(Ak,y,) 0 ) 
= k/o(Y~> 0 t2 (Y1,  Y2, Y3) k,o(Ak,y,> 2 2 

0 0 2 2 kio((~i> 

( (Ak'> kyo(Akry,> 0 ) 
E2(Y4, Ys, Y6) kyo(Akyy,) z 2 = kfo<~f> 0 , 

0 0 2 2 k:o< D 

Here the tacit assumption was made that no correla- 
tion exists between Ak, and fi,, and between Ak: and 
fi, respectively. This is justified by the fact that, to a 
first approximation, the angular deviations in the ver- 
tical plane do not influence the condition of Bragg re- 
flexion. 

The matrix product (4) gives the following explicit 
expressions for the elements of the covariance matrix 
of the triple-axis spectrometer resolution function: 

(X~)=cos  2 q~(Ak~)-2k~o sin q~ cos q~(Ak~?~> 
+kZo sin 2 (p(y~) +cos  2 q/(AkZf) 
- 2kj-o sin q~' cos q¢(Akfy.r)+kZro sin 2 q~'(y}) 

(X~)=s in  2 q~(Ak~>+ 2k~o sin (p cos p(Ak~y~) 
+ k~o cos z ~o(yz)+ sin 2 q; (Ak~> 
- 2 k , o  sin fo' cos q~'(Akyy:> + k2fo cos 2 q;(y~.> 

2 2 2 (Xa> = k,0(d,)  + k~0(6~ > 

(X]> = (h/m)Zk~o(Ak~) + (h/m)Zk}o(Ak2f > 

(X1Xz>=sin q~ cos 9(dk~> 
+ k~o(COS z ~o- sin z q~)(Ak~y~>-k~o sin q~ cos q~(~,z> 
+ sin q~' cos q~'(Ak2f)-kfo(Akyyf) 
+ k~o sin q~' cos :p' (~.> 

<X~X4>=(h/m)k,o cos ~(Ak~)-(h/m)k~o sin q~(Ako',) 
+(h/m)k,o cos q/(Ak~) 
-(h/m)k2,o sin (0'(2k:y,> 

(XEX4) = -(h/m)k~o sin q~(Ak~) 
+ (h/m)k~o cos q~(AkCy,> 
-(h/m)k:o sin q~'(Ak~.> 
-(h/m)k~o cos q ; (Ak ,y , )  

<xlx3>= <x2x >= . 

Here :p' = 09 - 20s. 
If the scattering does not depend on the direction 

of Q, then the expression (7) of the matrix B reduces 
to its first and last lines, provided the coordinate axis 
)(1 is directed along Qo- In this case it is enough to 

know the two-dimensional resolution function R(AQ, 
Ao9). The elements of its covariance matrix are: 

(AQZ)=(X~) 
= <x4 > 

(AQAco>= (X1X4> 

where 

~o= _ ,  ] atan ( - k : o  sin 20~ ) 
k~o-Zk.:o cos 20~, " 

For the diffractometer the covariance matrix is ob- 
tained in a similar way. It has the following elements: 

(X~)=4kZo sin 20s@2>-4k~o sin 0~ cos 0,(eye) 
2 +k~0 sin z 0~((~,~) + (yf))  

(XzZ)=k~o sin 2 0~((~,~) + (),~)) 

(XtXz) = 2k~o sin z 0s(ey,> 
-k~0 sin 0s cos 0s((y~>- (y~>) 

<x x3>=<X2X3>=O. 

Here e =AkJkio. 
If the elastic scattering cross section does not depend 

on the direction of Q one can define a one-dimen- 
sional resolution function with the dispersion (AQ/>= 
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